Joint segmentation and image interpretation using hidden Markov models
نویسندگان
چکیده
Image interpretation consists of interleaving the low-level task of image segmentation and the high-level task of interpretation. The idea being that the interpretation block guides the segmentation block which in turn helps the interpretation block in better interpretation. In this paper, we develop a joint segmentation and image interpretation scheme using the notion of joint hidden Markov model (HMM) for probabilistic modeling of spatial relationship. We find the optimal interpretation labels, which are nothing but the optimal state sequence of the HMM.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملImage fusion and unsupervised joint segmentation using a HMM and MCMC algorithms
In this paper we propose a Bayesian framework for unsupervised image fusion and joint segmentation. More specifically we consider the case where we have observed images of the same object through different imaging processes or through different spectral bands (multi or hyper spectral images). The objective of this work is then to propose a coherent approach to combine these images and obtain a ...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998